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Abstract

Acquiring perceptual expertise is slow and effortful. However, untrained novices can accurately

make difficult classification decisions (e.g., skin-lesion diagnosis) by reformulating the task as

similarity judgment. Given a query image and a set of reference images, individuals are asked to

select the best matching reference. When references are suitably chosen, the procedure yields an

implicit classification of the query image. To optimize reference selection, we develop and evalu-

ate a predictive model of similarity-based choice. The model builds on existing psychological lit-

erature and accommodates stochastic, dynamic shifts of attention among visual feature

dimensions. We perform a series of human experiments with two stimulus types (rectangles, faces)

and nine classification tasks to validate the model and to demonstrate the model’s potential to

boost performance. Our system achieves high accuracy for participants who are naive as to the

classification task, even when the classification task switches from trial to trial.

Keywords: Perceptual expertise; Categorization; Interactive classification; Similarity; Human-

computer interface; Optimization; Cognitive modeling

1. Introduction

Many challenging machine-learning problems involve humans in the loop (e.g., Bran-

son, Van Horn, Wah, Perona, & Belongie, 2014; Deng, Krause, & Fei-Fei, 2013; Jia,

Abbott, Austerweil, Griffiths, & Darrell, 2013; Wah, Maji, & Belongie, 2015). Individuals

may provide data to machine learning systems in the form of ratings, preferences, judg-

ments, and labels. Machine learning systems can organize and structure information pre-

sented to individuals. To build systems that can predict, interpret, and guide human

behavior, it is critical to leverage our understanding of human perception and cognition.
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Cognitive Science, University of Colorado, Boulder, CO 80309-0430. E-mail: brett.roads@colorado.edu



For example, when designing a human-assisted robot navigation system, human working-

memory capacity must be considered (Ahmed et al., 2014); and to interpret human movie

ratings on a site such as Netflix, sequential dependencies known to contaminate judg-

ments must be considered (Mozer, Pashler, & Link, 2011).

In this paper, we consider the design of decision support systems that enable individu-

als to perform difficult image classification problems via image comparison. Our inspira-

tion is a prototype system developed by dermatology researchers for diagnosing skin

lesions (Aldridge, Glodzik, Ballerini, Fisher, & Rees, 2011; Brown, Robertson, Bisset, &

Rees, 2009). The system requires users to make a visual comparison between a query
image of an unknown skin lesion to a set of reference images, which have ground-truth

labels. In a series of screens containing the query and a set of references, users are asked

to select the reference most similar to the query. Based on the labels of the selected refer-

ences, the query can be assigned an implicit class label. This approach of implicit classifi-

cation via similarity judgments was remarkably effective: Naive participants achieved a

diagnostic accuracy of 96% on a five-way classification task, whereas medical students

who had completed a 10-day dermatology attachment were only 51% correct when mak-

ing explicit diagnoses.

Aldridge et al. (2011) did not detail the exact procedure used for selecting references,

but it appears to have been heuristic. Machine learning researchers have recently taken a

more formal approach to the design of interactive classification systems in which refer-

ences are chosen to maximize efficiency and accuracy. Ferecatu and Geman (2009) pro-

pose an algorithm to search a large, unannotated image database for an instance of a

semantic category by asking individuals to make a series of similarity judgments between

reference images and a mental image of the target category. Wah et al. (2014) developed

a system that allows users to perform fine-grain categorization of a query image via simi-

larity comparisons. Their work focuses on distinguishing among many categories (e.g.,

200 bird species) but presumes that instances of a category are interchangeable. Thus,

like Ferecatu and Geman (2009), the problem is essentially formulated as an image retrie-

val task where the image represents a distinct class and the challenge stems from the

sheer number of images/classes.

Our goal is to develop an interactive classification system for the classic problem

of discriminating between two or a small number of alternatives, for example, the

skin lesion task of Aldridge et al. (2011). This problem differs significantly from

image retrieval in that the difficulty for humans comes from intra-category variability

and determining which features in a potentially high-dimensional space are relevant to

the task (Pashler & Mozer, 2013). However, we hypothesize that optimizing the selec-

tion of references in interactive classification systems, like that Aldridge et al. (2011),

will boost novice performance in the way that it has in interactive image-retrieval sys-

tems. We would like to emphasize that our work is largely orthogonal to large litera-

ture on training strategies used in visual category learning (e.g., Birnbaum, Kornell,

Bjork, & Bjork, 2013; Carvalho & Goldstone, 2014; Kang & Pashler, 2012). Our

objective is not to train novices, but to make it easier for naive users to correctly
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classify difficult unknown images by leveraging psychological models of human simi-

larity judgments.

The systems we have described draw inferences from human similarity judgments.

These inferences facilitate the selection of additional references or help determine the

query’s identity or class label. To glean the most information from human judgments, it

is exceedingly helpful to have a cognitive model of how those judgments are produced.

This response model consists of a theory of representation and a theory of how the repre-

sentations lead to the selection of responses. Although Ferecatu and Geman (2009) and

Wah et al. (2014) noted the importance of modeling human perception and decision mak-

ing, their formulations of a response model appear to be based on the authors’ intuitions.

In the present work, we focus on the question of what response model provides the best

characterization of human behavior. We leverage the psychological literature to direct the

space of explorations. The key premise of this work is that in order to predict and inter-

pret human behavior, one must understand the underlying cognitive mechanisms and

incorporate these mechanisms as biases or constraints in machine learning systems.

2. The psychology of similarity

The rich psychological literature on human and animal generalization (Shepard, 1987;

Tenenbaum, 1999) explores the conditions under which responses associated with one

stimulus transfer to another, or properties associated with one stimulus are ascribed to

another. The more similar stimuli are, the more likely generalization is to occur. Similar-

ity is based not on external properties of the stimuli, but rather on an individual’s internal

representation. We refer to this internal representation as the psychological representa-
tion. For now, we take this psychological representation as a given, but we discuss its

basis shortly. Various psychological theories (e.g., Jones, Maddox, & Love, 2005; Nosof-

sky, 1986; Shepard, 1987; Sinha & Russell, 2011) quantify similarity in terms of a

weighted q-norm distance metric: the distance between two stimuli q and r whose psy-

chological representations are denoted by N-dimensional feature vectors zq and zr, is:

dðzq; zrÞ ¼
XN
i¼1

wijzqi � zrijq
 !1=q

ð1Þ

where w is a relative weighting of the features, constrained by jjwjj1 ¼ 1 and wi � 0.

The degree of generalization from one stimulus to the other is then cast as a monotoni-

cally decreasing function of distance (Jones, Maddox, & Love, 2006; Jones, Love, &

Maddox, 2006; Nosofsky, 1986; Shepard, 1987). Integrating these models into their most

general form, we obtain:

gðdÞ ¼ cþ expð�bdsÞ ð2Þ

where c, b, and s modulate the gradient of generalization.
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In the human experiments we will describe, we ask participants to choose one of M
reference images most similar to a query image. The literature on psychological models

of similarity-based selection is not as well developed as the literature on generalization,

but 1-of-M choice is often modeled by a rule in which probability of selecting a candi-

date is proportional to its strength. In our studies, the strength of a candidate r is simply

its strength of generalization from query q, leading to:

PðrjqÞ / gðdðzq; zrÞÞ ð3Þ

When individuals judge similarity, the weighting of separable feature dimensions (w of

Eq. 1) is flexible and depends on the focus of attention. Concept learning can be charac-

terized in terms of the adaptation of weights to emphasize discriminative features (e.g.,

Jones et al., 2005). Other psychological phenomena suggest that weights must vary in a

more dynamic, immediate manner. Tversky (1977) demonstrated a set of phenomena that

are problematic for similarity measures based on distance metric, but which can be

explained if the weights are modulated by contextual factors such as the framing of a

question or the set of choice alternatives.

No single psychological theory at present can prescribe the weighting that an individ-

ual will adopt on a particular trial given the recent and current trial context. While multi-

ple models exist that specify how an error-signal can be used to update attentional

weights during learning (e.g., Kruschke, 1992; Love, Medin, & Gureckis, 2004), it is less

clear how to jointly model the various context-driven shifts in attention that occur outside

of learning. Although numerous models exist for handling specific choice scenarios (e.g.,

Mozer et al., 2011; Trueblood, Brown, & Heathcote, 2014), there is no single theory cap-

able of handling all potential sources of context-driven changes in attention. In modeling

human choice based on data over a series of trials, one could simply assume the weights

were fixed and estimate their maximum likelihood values. In our work, we improve on

this average-best approach by treating the weights as a random vector and marginalizing

over their uncertainty. This Bayesian approach has the advantage of steering us away

from situations in which the uncertainty in the weights maps to uncertainty in the model’s

predictions.

To capture the uncertainty in the attention weights, we assume that the weights w are

sampled from a Dirichlet distribution, w�Dirichlet(a), where the elements of the

N-dimensional concentration vector a are drawn from a Gamma density,

ai�Gammaðj;/Þ (see Fig. 1). The Dirichlet distribution has support over all convex

combinations of weights and thus provides a natural distribution for describing the alloca-

tion of attention across the N dimensions. The elements of the N-dimensional concentra-

tion vector a control the allocation of probability mass in the Dirichlet distribution (e.g.,

a bias toward uniform weights). To allow for maximum flexibility, we use the Gamma

distribution which has support from zero to infinity and permits a wide range of possible

distributions for the a values. In this work, the same Gamma distribution is used for all

concentration parameters, and the hyperparameters characterizing the Gamma distribution

are set to j = 3 and / = 1. There is nothing special about these specific hyperparameter
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values. Rather, what is important is that low values of j and / produce a Gamma distri-

bution that has low probability mass at low and high values of ai. In other words, these

hyperparameters act as a regularizer when learning the concentration parameters, discour-

aging values of ai that are large or near zero. Such regularization is important in order to

prevent overfitting to a particular set of observed behavior and enable generalization

across different contexts. The results we present are robust to the choice of these

hyperparameters.

3. Similarity-based classification

In this article, we explore similarity-based classification using a basic experimental

task in which participants are asked to select one of four reference images that is most

similar to a query image. Fig. 2a–c depicts sample displays with rectangle stimuli; the

query is colored blue and is surrounded by the references, colored black. Unbeknownst

to participants, each reference is associated with a class label, and selecting a reference

is equivalent to implicit classification. For example, consider a classification task involv-

ing discrimination on the basis of rectangle height. In Fig. 2b, the upper and lower pairs

of references are tall and short, respectively. If a participant judges the upper-right refer-

ence most similar to the query, the query would be classified as belonging to the tall

category.

How should references be selected? A sensible approach would be to choose references

so as to maximize the expected information gain about the target class. Ferecatu and

Geman (2009) propose a heuristic approximation to this objective, also adopted by Wah
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Fig. 1. A graphical model of similarity-based classification. Our model posits that attentional weights w can

vary by participant S and by trial T. The variation in weights can be modeled as Dirichlet distribution with N
concentration parameters ai (one for each dimension of the psychological representation). The probability of

making a given classification is given by Eq. 4. The parameter vector Θ � {c,b,s,q} modulates the gradient

of generalization in Eq. 2.
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et al. (2014), that involves searching for a set of references that have roughly equal prob-

ability of being selected given the history of user responses on the current trial. Although

this heuristic works well for the image retrieval task investigated by Ferecatu and Geman

(2009), it is inadequate in our domain due to the small number of classes. Instead, we

search for the set of references that maximize classification accuracy.

We start with a candidate set of R reference images. These images have been classified

by experts, and thus we can assume that each reference r 2 1, . . ., R has a known class

label, cr. For the time being, we also assume a known psychological representation, zr.
We assume that the reference instances can be used to define an approximate input den-

sity of queries q, that is, pðqÞ � PR
r¼1 vðrÞdðzq � zrÞ, where d is the Dirac delta and

v(r) is a prior probability on reference r, typically vðrÞ ¼ 1
R.

1 1

22

2 1

12

1 1

22

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Fig. 2. Sample displays used for implicit categorization. Each display consists of a query image in the cen-

ter surrounded by four reference images. The numerals indicate category membership and do not appear in

the actual displays. Displays (a)–(c) involve rectangles. Displays (d)–(i) involve faces. Each display corre-

sponds to a different implicit classification task, as elaborated in the article.
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Given a candidate set of M references, r, we can use the response model (Eq. 3) to

estimate the probability that a query q will be matched to a reference of class c:

Pðcjr; qÞ ¼
XM
i¼1

PðrijqÞ1cri¼c ð4Þ

Leveraging the query density estimate, we can define the optimal reference set, r�, as the
one that maximizes the expected classification accuracy of some query q with target class

cq:

r� ¼ argmaxr

XR
q¼1

vðqÞPðcqjr; qÞ ð5Þ

Fig. 2 shows optimal references chosen by this criterion for nine different classification

tasks, which we explain shortly. Given the relatively small search space in our tasks

(R < 150, M = 4), we found that a hill climbing search with restarts is adequate to iden-

tify the optimal sets. Our technique is readily extended to integrate similarity judgments

across multiple screens. That is, an initial set of references is presented, and conditioned

on the participant’s selection, a new set of references is presented. To support this

sequential decision procedure, we later present results from a greedy procedure in which

a posterior v(q|s) is determined for a given reference selection s, using the prior v(q) and
the likelihood P(s|q) (Eq. 3).

4. Stimuli and representation

Our experiments used two sets of stimuli: rectangles and male faces (Fig. 2). For each

domain, we require a psychological representation—the human internal representation of

the external stimulus properties. For rectangles, we considered four candidate representa-

tions: {width, height}, {log width, log-height}, {area, aspect ratio}, {log area, log aspect

ratio}. Krantz and Tversky (1975) obtained psychological evidence for {area,
aspect ratio}; Borg and Leutner (1983) argued for {log width, log height}. (We defined

aspect ratio as height divided by width.) We expanded these two options into the full

Cartesian product of possibilities and found that the {log area, log aspect ratio} represen-

tation was by far a better predictor of human responses. Results of the representation fit-

ting procedure are shown in Table S1 in the Supplemental Materials. The procedure we

used for determining the representation is similar to the procedure we will describe below

for fitting model parameters. Our experiments used 169 rectangle stimuli that were uni-

formly spaced on a 13 9 13 grid in width-height space.

The face stimuli in our experiments consisted of a set of 104 grayscale bald male

faces. We used a six-dimensional psychological representation previously derived by

Jones and Goldstone (2013) using non-metric Euclidean multidimensional scaling accord-

ing to the method of Goldstone (1994), based on human similarity judgments. Our
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inspection of the first three dimensions of the psychological representation suggests that

these dimensions roughly correspond to (1) age/shape, (2) skin color, and (3) machismo.

The next three dimensions are not readily summarized by verbal labels. The dimensions

are ordered from explaining the most to least variance in similarity judgments.

5. Experiments

We conducted three sets of human experiments in which participants were asked to

select the most similar reference to a query stimulus. Each set is composed of a Random
experiment and a follow-up Optimized experiment. The Random experiment used ran-

domly selected references in order to collect behavioral data for a model-fitting proce-

dure. The fitting procedure allowed us to determine the form of the model that best

accounts for human choices. The best fitting model was then used to identify an optimal

set of reference examples (Eq. 5), which were then used in the Optimized experiment.

We expect to observe better performance with the Optimized references than the Ran-

dom, but that does not go far in validating the references as truly optimal. We also show

that our model accurately predicts human choices on individual trials in the Optimized

experiment. To the degree that the model can predict trial-to-trial behavior, it is valid to

use the model as a proxy for humans in optimization, and we have some assurance that

the Optimized references are indeed that.

For each stimulus domain, the corresponding psychological representation was used to

construct multiple implicit categorization tasks. To create a categorization task, all psy-

chological points were first projected onto a single dimension. A category boundary was

defined on this projection such that half of the projected points were on one side of the

category boundary. Points very close to the boundary were removed. For the rectangle

stimuli, three category boundaries were created based on (a) width, (b) height, and (c)

aspect ratio. Ignoring color for the moment, Fig. 3a–c shows a visualization of points rep-

resenting rectangle stimuli in the psychological representation along with the boundary for

each categorization task. Note that because the stimuli are sampled uniformly in {width,
height} space, they are rotated and non-uniform in {log area, log aspect ratio} space. A

visualization showing the correspondence between points represented in {width, height}
space and {log area, log aspect ratio} is shown in Fig. S1 in the Supplemental Materials.

For the face stimuli, six tasks were defined by projecting the psychological points onto

each of the six axes of the representation. Fig. 3d–i shows the points representing faces

in a two-dimensional subspace of the six-dimensional psychological representation. Each

scatterplot shows two dimensions of the six-dimensional representation; one of the dimen-

sions is the critical dimension for the classification task.

One set of experiments was based on rectangle stimuli and the three rectangle category

boundaries. Two sets of experiments were based on the face stimuli, one with category

boundaries along dimensions 1–3 and one with boundaries along dimensions 4–6. To

summarize, we had three sets of experiments, each of which tests three category bound-

aries; each set consisted of a Random and the Optimized condition run between subjects.

8 B. D. Roads, M. C. Mozer / Cognitive Science (2016)



6. Experiments with randomly chosen references

Experiments were conducted using participants from Amazon Mechanical Turk. Partic-

ipants in the rectangle experiments were compensated $1.00 for approximately 10

minutes of work. Participants in the face experiments were compensated $1.50 for
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Fig. 3. A depiction of rectangle stimuli (a–c) and face stimuli (d–i) in a psychological representation. Each

colored dot in a scatterplot corresponds to a single stimulus. Each scatterplot depicts a different implicit cate-

gorization task, with the category boundary shown as a dashed line. For example, the boundaries shown in a,

b, and c correspond to a category boundary based on width, height, and aspect ratio, respectively. For each

categorization task, the R = 4 optimal references have been determined and are depicted by black diamonds.

The color of a dot—blue or yellow—indicates the predicted category label of each stimulus given the refer-

ences. The darkness of a dot indicates the extent to which an item will be classified into either category with

equal probability. Black dots indicate items that have exactly equal probability of being classified into either

of the two categories.
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approximately 15 minutes of work. Although the number of trials was held constant for

each participant, judgments of face similarity required more time than judgments of rect-

angle similarity.

In each of the three Random experiments, 20 participants made similarity judgments

between a query image and a reference set on 150 experimental trials (60 different sub-

jects total). Instructions explained that the participant’s goal was to select the reference

object that was most similar to the query object. Following instructions, participants com-

pleted three practice trials.

The 150 experimental trials were organized into 5 blocks, each with 30 trials. Each

block showed 10 trials for each implicit categorization task. The order of the 30 trials in

a block was randomized such that the implicit categorization tasks were highly inter-

leaved, resulting in an implicit categorization task that varied on a trial-by-trial basis.

However, the frequently changing categorization task is irrelevant for the unaware subject

because their task remains the same—select the reference object that is most similar to

the query object. For each trial, references were drawn at random, with the constraint that

there were two references of each category for that trial’s implicit categorization task.

The query was also chosen randomly with the constraint that queries were drawn with

equal frequency from each category. Subjects were given no feedback on the selections

throughout the entirety of the experiment.

Each block included three catch trials in which the query was identical to one of the

references. On the catch trials, participants making an earnest effort should choose the

identical reference. Subjects that failed to correctly select the identical reference on at

least 50% of catch trials were dropped from further analysis and replaced with a new sub-

ject that met the criterion. Across the three Random experiments, one subject was

replaced in the rectangles experiment and one subject was replaced in the faces dimen-

sion 4–6 experiment. Average accuracy was very high on catch trials for the rectangles

(M = 0.92, SD = 0.02), face dimensions 1–3 (M = 0.94, SD = 0.02), and face dimensions

4–6 (M = 0.96, SD = 0.02).

With this procedure for generating displays, two of the choices are “correct” with

respect to the implicit categorization task and two are “incorrect.” All participants saw the

same set of trials in the same block order. Within each block, the order of trials was ran-

domized for each participant. Throughout each block, a block-specific progress bar was

displayed at the top of the screen. Between blocks, participants were explicitly notified of

their progress in the experiment (e.g., “you have completed 1/5 of the experiment”).

To begin each trial, participants clicked on a screen-centered cross. Immediately fol-

lowing the click, the query object and reference set were displayed. Participants clicked

on the reference object they considered most similar to the query object. After the selec-

tion of a reference object, there was a 500 ms delay period followed by the cross for the

next trial. Participants were given no feedback. From the participant’s perspective, they

were performing a similarity judgment task and category-based feedback would have

been odd.

For each implicit categorization task, we computed an average accuracy score across

participants. The blue bars in Fig. 4 indicate average accuracy in the Random
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experiments. For all nine tasks, performance was reliably above the chance rate of 0.5.

(The chance rate is the implicit classification accuracy that would be obtained if partici-

pants chose references at random from a uniform distribution, given that the queries are

balanced between the two categories.)

7. Model fitting

Given a parameterization, our similarity model specifies the likelihood of each refer-

ence being chosen on a given trial of the experiment (Eq. 3). Assuming independence of

choices, we can compute the likelihood of the entire collection of participant responses.

(Ignoring the catch trials, there are 20 9 135 = 2,700 total trials.) To fit model parame-

ters, we use this likelihood in a slice sampler (Neal, 2003) to obtain the maximum a pos-

teriori parameters for a, b, and c. For q 2 {1, 2} and s 2 {1, 2} we simply performed

an exhaustive search. The search over q and s was constrained in order to reflect the tra-

ditional focus of response models (e.g., Jones et al., 2005; Nosofsky, 1986; Shepard,

1987; Sinha & Russell, 2011). A q value of 1 and 2 corresponds to 1-norm (city-block

distance) and 2-norm (euclidean distance), respectively. A s value of 1 and 2 corresponds

to an exponential and Gaussian generalization function, respectively.

For the rectangle experiment, q = 2 and s = 1 obtained the best fit. For each of the

face experiments, q = 2 and s = 2 obtained the best fit. For the face experiments,

the concentration parameters reveal a general trend of decreasing importance going from

the first face dimension to the sixth face dimension. The values for the all fitted parame-

ters are shown in Table S2 of the Supplemental Materials.

In addition to fitting the data to our similarity model, we also fit to the related model

proposed by Wah et al. (2014). Their model differs from ours in three respects. First,

they fix s = 2. Second, they do not marginalize over the uncertainty in the dimension

weighting; instead, they assume equal weighting across dimensions. Third, in contrast to

our generalization function (Eq. 2), which is based on psychological theory, they propose

a distinct function:
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Fig. 4. Empirical classification accuracy on (a) the rectangle tasks and (b) the face tasks. The blue and yel-

low bars indicate average classification accuracy in the Random and Optimized experiments, respectively.

Error bars indicate standard error of the mean.
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gðdÞ ¼ maxðe; ð1� eÞ expð�bd2ÞÞ ð6Þ

In our generalization function (Eq. 2), c modulates the degree of guessing when a

probe is far from all references. For a non-zero c, the contribution of c starts to dominate

over the exponential term when distances are large, homogenizing the choice distribution

over references. The parameter e in Wah et al.’s (2014) model has a similar effect,

although it kicks in only when distances reach a threshold.

For all three experiments, our model obtained the best log-likelihood scores. However,

this result is expected given that our model has more flexibility. A comparison of the

models will be more meaningful when we test the models—with parameters fixed—on

new data, as we will report shortly. A test on unseen out-of-sample data represents the

most informative test of a model.

8. Selection of optimized references

Given the best fitting model for each Random experiment, we determined the optimal

references according to Eq. 5. Fig. 3 shows the optimized references for the three rectan-

gle tasks and six face tasks; the references are indicated as black hollow diamonds. Each

scatterplot depicts the stimuli, references, and category boundary in the representation

space (or subspace, in the case of the face stimuli). The optimized reference points in

Fig. 3 correspond to the references shown in the sample displays of Fig. 2. Note that the

optimization procedure does not always select an equal number of references from each

implicit category. Due to the symmetry of the rectangle stimulus space, the rectangle ref-

erences are always balanced. However, two of the six face reference sets are unbalanced

(Fig. 2d,e).

The color of a dot—blue or yellow—indicates the predicted categorization of each

stimulus given the references. The darkness of a dot indicates the predicted probability of

categorization, where darker blue and darker yellow indicate items that have a less proba-

bility of being classified in a reliable manner. Black dots indicate items that have an

equal probability of being classified into either category. Note that for many of the tasks

(e.g., a and b), miscategorizations are predicted by the fitted response model.

9. Experiments with optimized references

The Optimized experiments were identical to the Random experiments with the substi-

tution of optimized references for the random references. The Optimized experiments

were conducted with new groups of 20 participants for each of the three experiments (60

different subjects total). As in the three Random experiments, we replaced subjects that

did not correctly answer at least 50% of the catch trials. Only one subject was replaced

for the face dimensions 4–6 experiment. After replacing subjects below criterion, average

12 B. D. Roads, M. C. Mozer / Cognitive Science (2016)



accuracy was very high on catch trials for the rectangles (M = 0.96, SD = 0.02), face

dimensions 1–3 (M = 0.96, SD = 0.01), and face dimensions 4–6 (M = 0.96, SD = 0.02).

For each implicit categorization task, we computed an average accuracy score across

the participants. The yellow bars in Fig. 4 indicate average accuracy in the Optimized

experiments. To compare accuracy in the Random and Optimized experiments, we per-

formed a two-sample t test (two-tailed, unequal variance) for all category boundaries. All

t tests revealed a significant (p < .05) advantage for the Optimized experiment with the

exception of the implicit categorization task on face dimension 6, where the difference

was in the right direction but not reliable. Table S3 in the Supplemental Materials shows

the details of the two-sample t test for all implicit categorization tasks.

We tested the models trained on the Random experiments with the unseen behavioral

data from the Optimized experiments. On the three Optimized experiments, the predic-

tions of our model obtained a higher log-likelihood score than those of the model of

Wah et al. (2014). In further testing where we replaced assumptions of Wah et al.’s

(2014) model with those of our model, we found that all three differences between the

models—s, marginalization, and the generalization function—contribute to the improved

likelihood. It should be noted that, although the log-likelihood scores favor our model,

accuracy predictions (to be described next) using either model are very similar. While

the log-likelihood score is technically the correct measure of fit, log-likelihood scores

accentuate differences in fit that may not translate to practical differences in behavioral

accuracy.

To compare our model predictions to observed behavior, we examined predicted versus

observed implicit categorization accuracy by aggregating data both by task and by indi-

vidual trial. We plot observed task accuracy against model-predicted accuracy to get a

sense of the correspondence of our model to behavior. Fig. 5 shows a scatterplot of pre-

dicted versus observed accuracy for each of the nine implicit categorization tasks in

(a) the Random and (b) Optimized experiments. The theoretical predictions explain nearly

all of the variance in observed accuracy.

0.5 1
0.5

1

R2 = 0.97

(a)

O
bs

er
ve

d 
A

cc
ur

ac
y Rectangles

Faces

0.5 1
0.5

1

R2 = 0.89

(b)

Predicted Accuracy
0 1

0

1

R2 = 0.72

(c)

0 1
0

1

R2 = 0.63

(d)

Fig. 5. Predicted versus observed accuracy for (a) the nine implicit categorization tasks in the Random

experiments, (b) the nine tasks in the Optimized experiments, (c) individual trials in the Random experiments,

and (d) individual trials in the Optimized experiments. Data from the rectangle experiments are displayed in

blue and data from the face experiments are shown in red. A slight jitter is introduced along the ordinate to

distinguish the points.
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Beyond examining model predictions on each implicit categorization task as a whole,

we examined model predictions of implicit categorization accuracy on individual trials.

Because each participant in each experiment saw the same set of trials, we can average

across participants to obtain a trial-based accuracy. Fig. 5 shows predicted versus

observed trial accuracy for (c) Random and (d) Optimized experiments. Table S4 in the

Supplemental Materials shows that the theoretical predictions explain a significant propor-

tion of the variance in observed accuracy for all experiments.

Although the Random experiments were used to fit model parameters, note that model

fitting aimed at predicting the selected reference, not on optimizing implicit categoriza-

tion accuracy. Thus, it is not entirely trivial that the model does as well as it does on the

Random experiment. Regardless, it is impressive that the model is able to predict which

specific queries will be classified correctly, in both Random and Optimized experiments.

10. Conclusions

We have described an approach to human-machine cooperative classification that

leverages the human’s ability to extract high-level visual features and judge similarity,

and the machine’s ability to predict, steer, and optimize human performance. By utilizing

a hierarchical Bayesian model of attention, we have developed a general approach that is

robust to arbitrary sources of attention variation, such as sequential effects. The approach

allows novices to competently categorize images even when they are unaware of the cate-

gorization task, or even more remarkably, when the task switches from moment to

moment.

The obvious obstacle to putting this approach into practice is scaling, progress on

which has been made for image-retrieval tasks (Ferecatu & Geman, 2009; Wah et al.,

2014). To tackle intricate discrimination tasks in high-dimensional feature spaces, a multi-

stage approach will be required in which a series of similarity judgments are jointly used

to obtain an implicit classification. Once a user makes an initial similarity judgment, a

multi-stage approach can show a new set of references that allows the system to hone in

on the implicit categorization. We have taken a small step in this direction by considering

two-stage judgments. In Fig. 6a, we compare the model’s prediction of implicit classifica-

tion accuracy for a single-stage judgment with 4, 6, 8, or 16 references, as well as a

two-stage judgment with four references at each stage. The model makes two interesting

predictions. First, the model predicts a diminishing value of additional references, due to

an effect of decision noise parameters (c and b) that grows with the number of alterna-

tives. (Interestingly, decision failure with a large number of alternatives is usually attribu-

ted to limits on attention, yet the model provides a natural explanation without requiring

an additional mechanism.) These results suggest that even though our approach is compu-

tationally capable of optimizing a large number of references, it may be psychologically

suboptimal to present the user with a screen packed with different references. Second, the

model predicts that a two-stage judgment can yield a significant boost in accuracy.

Fig. 6b and c show the selected references at the first and second stages, respectively. The
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reference chosen by the participant at the first stage determines the set of references used

for the second stage. These references were obtained with the greedy stage-wise optimiza-

tion described earlier. Future work will determine if our model correctly predicts human

responses for a larger number of references and multiple stages of selection.

We are optimistic about the practical application of similarity-based classification in

domains such as medicine and biology. Although months or years of training are required

to learn difficult classification tasks, similarity-based classification requires no training.

Further, we conjecture that similarity-based classification can be improved with a small

amount of instruction. Although verbal instruction is ordinarily difficult for novices to

operationalize, instruction may be effective in highlighting relevant feature dimensions

(e.g., “focus on the irregularity and patchiness of the rash”).
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Supporting Information

Additional Supporting Information may be found

online in the supporting information tab for this article:

Fig. S1. A depiction of the various representations

tested for the rectangle stimuli. Throughout the rectangle

experiments, we used stimuli that were sampled uni-

formly in width and height space. The four panels

demonstrate the result of representing the same set of

stimuli (used in the width category boundary task) in four

different representational spaces: (a) {width, height}, (b)
{area, aspect ratio}, (c) {log-width, log-height}, and

(d) {log-area, log-aspect ratio}.
Table S1. Evaluation of different rectangle representa-

tions across various models. These comparisons were

made without a hierarchical framework. The Theory-

based model is a general form of various similarity mod-

els motivated by psychological theory. The Wah et al.

model corresponds to the general form of a similarity

model used in Wah et al. (2014).
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Table S2. Optimal model parameters for each

experiment

Table S3. Two-sample t test for Random versus Opti-

mized Experiments, using empirical behavioral data.

Table S4. Predicted versus Observed Accuracy. The

F-statistics and p-values show the results of testing if the

fitted linear model is significantly different than a con-

stant model. Results are shown when data are aggregated

by implicit categorization tasks and by individual trials.
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